

OOO «МИКРОРАДАР-СЕРВИС» Республика Беларусь, г. Минск tel.: +375173771143, 3634160 E-mail: market@microradar.com

www. microradar.com

Анализатор MP112C13M. Оптимизация контроля концентрации сухих веществ и влажности в процессе флотации при обогащении угля

Половина всех добываемых углей обогащаются методами водяной флотации. Существенным и определяющим фактором качества флотации является правильная подготовка и регулирование плотности пульпы. Плотность пульпы влияет на технологические показатели обогащения: извлечение продукта в концентрат и содержание его в концентрате. В очень плотных пульпах, когда концентарция твердого близка к 100%, флотация невозможна, и обогащения угля не происходит. При очень малых плотностях извлечение флотируемого минерала понижается за счет уменьшения прочности пены. Содержание флотируемого минерала в пенном продукте с увеличением плотности непрерывно падает за счет увеличения механического выноса пустой породы.

При обогащении угля содержание твердой фазы в пульпе, подвергаемой флотации, должно составлять:

для углей марок Г и Д - 80-120 кг/м.куб;

для углей марок Ж, К, ОС, Т - 120-150 кг/м.куб.;

для антрацитов - 150-180 кг/м.куб;

Для труднофлотируемых углей содержание твердого в пульпе для марок Ж, К, ОС, Т и А допускается принимать 80-120 кг/м.куб.

Диапазон допустимых плотностей достаточно широк, и, на практике, поиск оптимальной плотности осуществляется экспериментально, исходя из особенностей технологии, процесса и материала. Оптимизировать этот процесс и регулировать плотность в процессе подготовки пульп для флотации помогают поточные плотномеры.

Применение влагомеров – плотномеров МИКРОРАДАР - Эффективное управление плотностью пульпы:

- Увеличивает содержание полезного продукта в концентрате
- снижает капитальные и операционные издержки
- увеличивает производительность флотомашин
- уменьшает расход реагентов
- уменьшает расход энергии и воды

Анализатор МР112С13М

- Идеально подходит для измерения массовой доли сухих веществ при транспортировке в трубах диаметром 30-350 мм.
- Подключается в существующий технологический процесс без применения байпасов
- Может измерять массовую долю сухих веществ как на начальной стадии сгущения, с содержаниям сухих веществ 2-5 % так и на любом этапе концентрирования, до 95 % сухих веществ.
- Малочувствителен к составу и температуре сгущаемого материала.
- Нечувствителен к прозрачности материала может работать как с прозрачным жидкостями, так и с абсолютно не прозрачными, такими как песчаные шламы или тесто.
- Погрешность измерения от 0,25 до 1 % в зависимости от диапазона и условий измерения, за вычетом погрешности пробоотбора и погрешности измерения стандартным методом.
- Через линию связи RS 485 по протоколу MODBUS легко интегрируется в существующие системы управления технологическими процессами.
- Пылевлагозащита IP66.
- Изготовлен из качественной нержавеющей стали и инертных материалов, может промываться любыми щелочами или кислотами с температурой до 150 гр.
- При диаметрах трубопроводов до 100 мм поставляется в виде отрезка трубы с встроенными датчиками и может поставляться как с накидными гайками, так и с фланцами, в зависимости от особенностей места установки. Ответные накидные гайки и фланцы входят в комплект поставки.
- При диаметрах трубопровода более 100 мм. поставляется в виде отдельных датчиков с монтажными элементами, которые устанавливаются потребителем самостоятельно, по чертежам и рекомендациям изготовителя.

Как это работает

Анализатор MP112C13M использует принцип измерения сдвига фаз радиоволн свч диапазона для определения концентрации сухих веществ или влажности среды. Фазовая разность радиоволны определяется только объемной диэлектрической проницаемостью материала и не зависит ни от его цвета, ни от консистенции, ни от грансостава, ни от примесей, как не зависит и от условий измерения - скорости потока, давления и других. Диэлектрическая проницаемость воды 80, диэлектрическая проницаемость сухих веществ — 3-4, диэлектрическая проницаемость линейно зависит от содержания сухих веществ в воде, что делает возможным непрерывное измерение концентрации или влажности в режиме реального времени. Отсутствие оптических и подвижных деталей и компонентов обеспечивают высокую надежность и минимальные требования к техническому обслуживанию прибора.

Анализаторы состоят из микроволновых датчиков, микроволнового модуля и блока обработки

Легкосъемные микроволновые датчики могут поставляться в двух вариантах

1. В виде отдельных датчиков с монтажными элементами, которые устанавливаются потребителем самостоятельно, по чертежам и рекомендациям изготовителя.

На рисунках показаны общий вид датчиков и пример установки их на трубе большого диаметра.

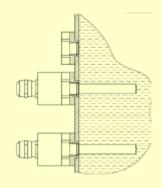
2. В виде отрезка трубы со встроенными датчиками и с накидными гайками, или с фланцами,

в зависимости от особенностей места установки. Ответные накидные гайки и фланцы входят в комплект поставки. На рисунке показан пример установки на трубе диаметром 50 мм.

Блок обработки обеспечивает автоматическую коррекцию результатов измерения при изменении температуры материала,

имеет токовый выход и последовательный канал связи с ЭВМ RS-485. Сигнал сенсоров поступает в блок обработки, в котором происходит вычисление концентрации или влажности.

Измеряемая величина, влажность, или концентрация отображается на индикаторном табло блока обработки, преобразуется в аналоговые выходы 4-20 мА и 0-5 В и передается на компьютер по каналу RS485 с использованием современных протоколов обмена. Простота градуировки и обслуживания обеспечивается ясным и удобным интерфейсом


Основные технические параметры

Параметр	Характеристика параметра	
Диапазон измеряемой влажности, %	от 15 до 100	
Основная погрешность, % абс.	не более 0,5	
Диапазон измеряемой плотности , кг/см.куб.	от 700 до 3000	
Основная абсолютная погрешность по плотности, кг/м.куб.	не более 5	
Диапазон содержания сухих кг/м.куб	0-500	
Основная абсолютная погрешность по сухим кг/м.куб, не более	5	
Температура контролируемого материала, °С	от +0 до +95	
Диаметр трубы, мм.	50-300	
Допустимая проводимость материала, мСм/см	0-40	
Стандарт токового выхода (по выбору), мА	05; 020; 420	
Напряжение питания, В	~220 (+2233) 50 Гц или постоянное =24±3	
Потребляемая мощность, В•А	не более 50	

^{*} в зависимости от диапазона измерений, без учета погрешности стандартного метода.

Монтаж датчиков на трубах большого диаметра

Соответствие нормам Технического Регламента Таможенного Союза:

004/2011 "О безопасности низковольтного оборудования", 020/2011 "Электромагнитная совместимость технических средств"

Микроволновые плотномеры на рынке сегодня.

На мировом рынке сегодня представлены три бренда микроволновых плотномеровконцентратомеров – Toshiba LQ500 (Япония), VALMET TS (США) и МИКРОРАДАР112 (Беларусь). В таблице представлены основные характеристики приборов.

Параметр	Toshiba LQ500	VALMET TS	МИКРОРАДАР112
Диапазон	0-50	0-40	0-75
концентрации сухих			
веществ, %			
Инструментальная	0,01	0,01	0,01
погрешность, %			
Основная	Нет данных	Нет данных	0,5
погрешность,%			
Температура	0-100	0-100	0-100
материала			
Проводимость	0-20	0-40	0-40
материала, мСм/см			
Связь с компьютером	нет	RS-232	RS-485
Длина кабеля между	10 м	10 м	25 м
сенсором и			
электронным блоком			
Наличие в трубе	нет	да	нет
выступающих частей			
Метод	Изменение	Изменение	Изменение
	диэлектрической	диэлектрической	диэлектрической
	проницаемости	проницаемости	проницаемости
Коррекция по	да	да	да
температуре и			
проводимости			
Питание	90-260 B	90-260 B	220 B, 24 B